Sparse Representation Based Augmented Multinomial Logistic Extreme Learning Machine with Weighted Composite Features for Spectral Spatial Hyperspectral Image Classification

نویسندگان

  • Faxian Cao
  • Zhijing Yang
  • Jinchang Ren
  • Wing-Kuen Ling
چکیده

Although extreme learning machine (ELM) has been successfully applied to a number of pattern recognition problems, it fails to provide sufficient good results in hyperspectral image (HSI) classification due to two main drawbacks. The first is due to the random weights and bias of ELM, which may lead to ill-posed problems. The second is the lack of spatial information for classification. To tackle these two problems, in this paper, we propose a new framework for ELM based spectral-spatial classification of HSI, where probabilistic modelling with sparse representation and weighted composite features (WCF) are employed respectively to derive the optimized output weights and extract spatial features. First, the ELM is represented as a concave logarithmic likelihood function under statistical modelling using the maximum a posteriori (MAP). Second, the sparse representation is applied to the Laplacian prior to efficiently determine a logarithmic posterior with a unique maximum in order to solve the ill-posed problem of ELM. The variable splitting and the augmented Lagrangian are subsequently used to further reduce the computation complexity of the proposed algorithm and it has been proven a more efficient method for speed improvement. Third, the spatial information is extracted using the weighted composite features (WCFs) to construct the spectral-spatial classification framework. In addition, the lower bound of the proposed method is derived by a rigorous mathematical proof. Experimental results on two publicly available HSI data sets demonstrate that the proposed methodology outperforms ELM and a number of state-of-the-art approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations

The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...

متن کامل

Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms

Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...

متن کامل

Hyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features

Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification acc...

متن کامل

Extreme Sparse Multinomial Logistic Regression: A Fast and Robust Framework for Hyperspectral Image Classification

A Fast and Robust Framework for Hyperspectral Image Classification Faxian Cao1, Zhijing Yang1*, Jinchang Ren2, Wing-Kuen Ling1 1 School of Information Engineering, Guangdong University of Technology, Guangzhou, 510006, China; [email protected]; [email protected]; [email protected] 2 Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, UK; jinchan...

متن کامل

Nonparametric Spectral-Spatial Anomaly Detection

Due to abundant spectral information contained in the hyperspectral images, they are suitable data for anomalous targets detection. The use of spatial features in addition to spectral ones can improve the anomaly detection performance. An anomaly detector, called nonparametric spectral-spatial detector (NSSD), is proposed in this work which utilizes the benefits of spatial features and local st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1709.03792  شماره 

صفحات  -

تاریخ انتشار 2017